Chapter 8:

Class and Method
Design

Objectives

® Become familiar with coupling, cohesion, and
connascence.

® Be able to specity, restructure, and optimize object
designs.

® Be able to identify the reuse of predefined classes,
libraries, frameworks, and components.

® Be able to specify constraints and contracts.
®* Be able to create a method specification.

Introduction

Review the characteristics of object orientation
Present useful criteria for evaluating a design
Present design activities for classes and methods

Present the concept of constraints & contracts to define
object collaboration

Discuss how to specify methods to augment method
design
Caution:

® (lass & method design must precede coding

® While classes are specified in some detail, jumping into coding
without first designing them may be disastrous

Characteristics of OOSAD

Classes

® |nstantiated classes are objects

® (Classes are defined with attributes, states & methods

® (Classes communicate through messages
Encapsulation & information hiding

® (Combine data and operations into a single object

® Reveal only how to make use of an object to other objects
e Key to reusability

Polymorphism & dynamic binding

Inheritance

Polymorphism & Dynamic
Binding

Polymorphism

® The ability to take on several different forms

® Same message triggers different methods in different objects
Dynamic binding

® Methods—the specific method used is selected at run time

® Attributes—data type is chosen at run time

® |mplementation of dynamic binding is language specific

Decisions made at run time may induce run-time errors
Need to ensure semantic consistency

Polymorphism Example

A oy [Empleee

Inheritance

® Permits reuse of existing classes with extensions for
new attributes or operations

* Types
® Single inheritance -- one parent class

¢ Multiple inheritance -- multiple parent classes (not supported
by all programming languages)

® Redefinition of methods and/or attributes

® Not supported by all programming languages
® May cause inheritance conflict
® Designers must know what the chosen programming
language supports

Inheritance Conflicts
| Person]

® An attribute or method in a sub-class with
+computePay()

the same name as an attribute or method
In the super class ‘

® Cause is poor classification of sub-classes:

e Generalization semantics are violated, or o e
® Encapsulation and information hiding principle is ‘

violated

® May also occur in cases of multiple +computePay()
Inheritance

Design Criteria

® A set of metrics to evaluate the design

® Coupling—refers to the degree of the closeness of the
relationship between classes

® Cohesion—refers to the degree to which attributes and
methods of a class support a single object

® Connascence—refers to the degree of interdependency
between objects

Coupling

Close coupling means that changes in one part of the
design may require changes in another part

Types
® [nteraction coupling measured through message passing

® |nheritance coupling deals with the inheritance hierarchy of
classes

Minimize interaction coupling by restricting messages
(Law of Demeter)

Minimize inheritance coupling by using inheritance to
support only generalization/specialization and the
- principle of substitutability

Law of Demeter

Messages should be sent only by an object:

to itself

to objects contained in attributes of itself or a superclass

to an object that is passed as a parameter to the method

to an object that is created by the method

to an object that is stored in a global variable

@ PowerPoint Presentation for Dennis, Wixom, & Tegarden Systems Analysis and Design with UML, 4th Edition

Copyright © 2009 John Wiley & Sons, Inc. All rights reserved.
WILEY

Types of Interaction Coupling

Good No Direct Coupling The methods do not relate to one another; that is, they do
not call one another.

Data The calling method passes a variable to the called method. If
the variable is composite (i.e., an object), the entire object is
used by the called method to perform its function.

Stamp The callimg method passes a compaosite variable (i.e., an
object) to the called method, but the called method only
uses a portion of the object to perform its function.

Control The calling method passes a control variable whose value
will control the execution of the called method.

Common or Global The methods refer to a “global data area” that is outside the
individual objects.

Bad Content or Pathological A method of one object refers to the inside (hidden parts) of
another object. This violates the principles of encapsulation
and information hiding. However, C++ allows this to take
place through the use of “friends.”

Source: These types were adapted from Meilir Page-lones, The Practical Cuide to Structured Systems Design, 2nd
ed. (Englewood Cliffs, N|: Yardon Press, 1988); and Glenford Myers, Compasite/Structured Design (New York: Van -
Mostrand Reinhold, 1978).

N /]

Cohesion

® A cohesive class, object or method refers to a
single thing
®* Types

Method cohesion
® Does a method perform more than one operation?

® Performing more than one operation is more difficult to understand
and implement

Class cohesion

® Do the attributes and methods represent a single object?
® (Classes should not mix class roles, domains or objects
Generalization/specialization cohesion

® Classes in a hierarchy should show “a-kind-of” relationship, not
associations or aggregations

Types of Method Cohesion
e e e

Good Functional A method performs a single problem-related task (e.g.,
calculate current GPA).

uential The method combines two functions in which the output

tp
from the first one is used as the input to the second one
ie.g., format and validate current GPA).

Communicational The method combines two functions that use the same
attributes to execute (e.g., calculate current and
cumulative GPA).

Procedural The method supports multiple weakly related functions. For
example, the method could calculate student GPA, print
student record, calculate cumulative GPA, and print
cumulative GPA.

Temporal or Classical The method supports multiple related functions in time
ie.g., initialize all attributes).

Logical The method supports multiple related functions, but the
choice of the specific function is chosen based on a control
variable that is passed into the method. For example, the
called method could open a checking account, open a sav-
ings account, or calculate a loan, depending on the message
that is send by its calling method.

Bad Coincidental The purpose of the method cannot be defined or it performs
multiple functions that are unrelated to one another. For
example, the method could update customer records, calcu-
late loan payments, print exception reports, and analyze
competitor pricing structure.

Source: These types were adapted from Page-Jones, The Practical Guide to Structured Systems, and Myers,
Composite/Structured Design.

Types of Class Cohesion
el e b

Good Ideal The class has none of the mixed cohesions.

Mixed-Role The class has one or more attributes that relate objects of
the class to other objects on the same layer (e.g., the
problem domain layer), but the attribute(s) have nothing to
do with the underlying semantics of the class.

Mixed-Domain The class has one or more attributes that relate objects of the
class to other objects on a different layer. As such, they have
nothing to do with the underlying semantics of the thing that
the class represents. In these cases, the offending attribute(s)
belongs in another class located on one of the other layers.
For example, a port attribute located in a problem domain
class should be in a system architecture class that is related
to the problem domain class.

Worse Mixed-Instance The class represents two different types of objects. The class
should be decomposed into two separate classes. Typically,

different instances only use a portion of the full definition of
the class.

Source: Page-Jones, Fundamentals of Object-Onented Design in UML,

~aml

Connascence

® (Classes are so interdependent that a change in one
necessitates a change in the other

® Good programming practice should:
® Minimize overall connascence; however, when combined with
encapsulation boundaries, you should:

® Minimize across encapsulation boundaries (less interdependence
between or among classes)

* Maximize within encapsulation boundary (greater interdependence
within a class)

® A sub-class should never directly access any hidden attribute or
method of a super class

Types of Connascence
e e

Mame If a method refers to an attribute, it is tied to the name of the attribute. If the
attribute’s name changes, the content of the method will have to change.

Type or Class If a class has an attribute of type A, it is tied to the type of the attribute. If the
type of the attribute changes, the attribute declaration will have to change.

Convention A class has an attribute in which a range of values has a semantic meaning (e.g.,
account numbers whose values range from 1000 to 1999 are assets). If the range
would change, then every method that used the attribute would have

to be modified.

Algorithm Two different methods of a class are dependent on the same algorithm to
execute commectly (e.g., insert an element into an array and find an element in
the same array). If the underlying algorithm would change, then the insert and
find methods would also have to change.

Position The order of the code in a method or the order of the arguments to a method is
critical for the method to execute comectly. If either is wrong, then the method
will, at least, not function correctly.

Source: Meilir Page-Jones, “Comparing Technigues by Means of Encapsulation and Connascence” and Meilir
Page-lones, Fundamentals of Object-Orented Design in LML -

Object Design Activities

® An extension of analysis & evolution activities
® Expand the descriptions of partitions, layers & classes

® Adding specifications to the current model

® |dentifying opportunities to reuse classes that already exist

® Restructuring the design

® QOptimize the design

® Map the problem domain classes into a programming language

Adding Specifications

®* Review the current set of analysis models

® All classes included are both sufficient and necessary to solve
the problem

® No missing attributes or methods
® No extra or unused attributes or methods
® No missing or extra classes
® Examine the visibility of classes
® Private—not visible
® Public—uvisible to other classes
® Protected—visible only to members of the same super class

Adding Specifications (cont.)

® Decide on method signatures:
® Name of the method
® Parameters or arguments to pass
® Type of value(s) to be returned

® Define constraints that must be preserved by the objects
® Preconditions, post-conditions, & invariants
® Decide how to handle constraint violations

ldentify Opportunities for
Reuse

Design patterns—groupings of classes that help solve
a commonly occurring problem

Framework—a set of implemented classes that form
the basis of an application

Class libraries—also a set of implemented classes, but
more general in nature than a framework

Components—self-contained classes used as plug-ins
to provide specific functionality

Choice of approaches depends on the layer

Restructure the Design

® Factoring—separating aspects from a class to simplify
the design

® Normalization—aids in identifying missing classes

® Assure all inheritance relationships support only
generalization/specialization semantics

Optimizing the Design

¢ Balance understandability with efficiency
® Methods:

Review access paths between objects
Review all attributes of each class

Review direct (number of messages sent by a method) and
indirect fan-out (number of messages by methods that are
induced by other methods)

Consider execution order of statements in often-used methods

Avoid re-computation by creating derived attributes and triggers
Consider combining classes that form a one-to-one association

Mapping Problem-Domain
Classes

® Factor out multiple inheritance if using a language that
supports only single inheritance

® Factor out all inheritance if the language does not
support inheritance

® Avoid implementing an object-oriented design in non-
object languages

Constraints and Contracts

® A contract is a set of constraints & guarantees

® |f the requestor (client) meets the constraints, the responder
(server) will guarantee certain behavior

® Constraints must therefore be unambiguous
® (Contracts document message passing between objects
® A contract is created for each visible method in a class

® Should contain enough information for the programmer to
understand what the method is supposed to do

® Constraint types

® Precondition—must be true before the method executes
® Post-condition—must be true after the method finishes

® |nvariant—must always be true for all instances of a class

Sample Contract Form

Method Name:

Class Name:

1D:

Clients {Consumers):

Associated Use Cases:

Description of Responsibilities:

Arguments Received:

Type of Value Returned:

Pre-Conditions:

Post-Conditions:

Method Specification

® Documentation details for each method
® Allows programmers to code each method

® Must be explicit and clear

® No formal standards exist, but information should
include:

General information (e.g., method name, class name, etc.)
Events—anything that triggers a method (e.g., mouse click)

Message passing including values passed into a method and
those returned from the method

Algorithm specifications
Other applicable information (e.g., calculations, procedure calls)

Method Specification Form

Method Name: Class Name: 1D:
Contract 1D: Programmer: Date Due:
Programming Language:

1 Visual Basic 2 Smalltalk JC+t J Java
Triggers/Events:

Arguments Received:
Data Type: Notes:

Messages Sent & Arguments Passed:
ClassName.MethodName: Data Type: Notes:

Arguments Returned:
Data Type: Notes:

Algorithm Specification:

Summary

Basic Characteristics of Object Orientation (review)
Design Criteria—coupling, cohesion & connascence
Object Design Activities (5)

Constraints and Contracts

Method Specification

